Algebra-II B. Math - First year Semestral Exam 2012-2013

Time: 3hrs Max score: 100

Answer question **1** and any **four** from the rest.

(1) State true or false. Justify your answers. No marks will be awarded in the absence of proper justification.

(a) The subgroup $SL_n(\mathbb{F}_p) = \{A \in GL_n(\mathbb{F}_p) : \det(A) = 1\}$ is of index p in $GL_n(\mathbb{F}_p)$.

(b) For an idempotent matrix A (ie. $A^2 = A$), rank is same as number of non-zero eigen values.

(c) The eigenvalues of a complex skew hermitian matrix A

(ie. $A^* = -A$) are all real.

(d) The columns of an $n \times n$ unitary matrix form an orthonormal basis of \mathbb{C}^n . (5+5+5+5)

(2) Let V be a vector space over some field \mathbb{F} and let dimV = n. Let $T: V \longrightarrow V$ be a linear operator.

(a) Let λ be an eigenvalue of T. Then show that geometric multiplicity (ie. dimension of the eigenspace) of λ is less than or equal to its algebraic multiplicity.

(b) Show that T is diagonalizable if and only if for every eigenvalue λ of T, geometric multiplicity equals algebraic multiplicity. (12+8)

(3) (a) Define hermitian matrices. Show that the set of all $n \times n$ hermitian matrices form a vector space over the reals. Find a basis for this space and determine its dimension.

(b) Let W be the space of all real $n \times n$ matrices of trace zero. Find a subspace W' such that $\mathbb{R}^{n \times n} = W \oplus W'$. (12+8)

(4) (a) Show that a real $n \times n$ matrix A represents the dot product with respect to some basis of \mathbb{R}^n iff $A = P^t P$ for some invertible matrix $P \in GL_n(\mathbb{R})$.

(b) Let V be the vector space of all real polynomials of degree ≤ 3 . Define a bilinear form on V by

$$\langle f,g \rangle = \int_{-1}^{1} f(x)g(x)dx.$$

(10+10)

Find an orthonormal basis for V.

(5) Let the matrix of a symmetric bilinear form \langle , \rangle on \mathbb{R}^3 be $A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ with respect to the standard basis. Find an orthogonal basis of \mathbb{R}^3 with respect to the standard basis.

onal basis of \mathbb{R}^3 with respect to \langle, \rangle . Hence find the signature of the form. (20)

(6) (a) Prove that a complex matrix M is normal if and only if there is a unitary matrix P such that PMP^* is diagonal.

(b) Hence show that every conjugacy class in the unitary group $U_n =$ $\{P: P^*P = I_n\}$ contains a diagonal matrix. (16+4)

 $\mathbf{2}$